Characterization of a trimeric light-harvesting complex in the diatom Phaeodactylum tricornutum built of FcpA and FcpE proteins
نویسندگان
چکیده
Fucoxanthin chlorophyll proteins (Fcps), the light-harvesting antennas of heterokont algae, are encoded by a multigene family and are highly similar with respect to their molecular masses as well as to their pigmentation, making it difficult to purify single Fcps. In this study, a hexa-histidine tag was genetically added to the C-terminus of the FcpA protein of the pennate diatom Phaeodactylum tricornutum. A transgenic strain expressing the recombinant His-tagged FcpA protein in addition to the endogenous wild type Fcps was created. This strategy allowed, for the first time, the purification of a specific, stable trimeric Fcp complex. In addition, a pool of various trimeric Fcps was also purified from the wild-type cells using sucrose density gradient ultracentrifugation and gel filtration. In both the His-tagged and the wild-type Fcps, excitation energy coupling between fucoxanthin and chlorophyll a was intact and the existence of a chlorophyll a/fucoxanthin excitonic dimer was demonstrated using circular dichroism spectroscopy. Mass spectrometric analyses of the trimeric His-tagged complex indicated that it is composed of FcpA and FcpE polypeptides. It is confirmed here that a trimer is the basic organizational unit of Fcps in P. tricornutum. From circular dichroism spectra, it is proposed that the organization of the pigments on the polypeptide backbone of Fcps is a conserved feature in the case of chlorophyll a/c containing algae.
منابع مشابه
Polypeptides of a Light-Harvesting Complex of the Diatom Phaeodactylum tricornutum Are Synthesized in the Cytoplasm of the Cell as Precursors.
A light-harvesting fucoxanthin-chlorophyll a/c-protein complex has been isolated from the diatom Phaeodactylum tricornutum by detergent extraction of thylakoid membranes coupled with sucrose density gradient centrifugation. The isolated complex was devoid of photochemical activity and displayed spectral characteristics consistent with light harvesting function. It has three major polypeptides o...
متن کاملBiogenesis and light regulation of the major light harvesting chlorophyll-protein of diatoms.
The apoprotein of the major light harvesting pigment-protein complex from the diatom Phaeodactylum tricornutum (UTEX 646) is composed of two similar polypeptides of 17.5 and 18.0 kilodaltons (kD). The in vivo synthesis of these polypeptides is inhibited by the 80s protein synthesis inhibitor cycloheximide, but not by the 70s ribosome inhibitor chloramphenicol. When total poly(A)(+) RNA was used...
متن کاملMultisignal control of expression of the LHCX protein family in the marine diatom Phaeodactylum tricornutum
Diatoms are phytoplanktonic organisms that grow successfully in the ocean where light conditions are highly variable. Studies of the molecular mechanisms of light acclimation in the marine diatom Phaeodactylum tricornutum show that carotenoid de-epoxidation enzymes and LHCX1, a member of the light-harvesting protein family, both contribute to dissipate excess light energy through non-photochemi...
متن کاملLight-Harvesting Function in the Diatom Phaeodactylum tricornutum: II. Distribution of Excitation Energy between the Photosystems.
The distribution of excitation energy between photosystems I and II (PSI and PSII) was investigated in the marine diatom Phaeodactylum tricornutum (Bohlin) using light-induced changes in fluorescence yield and rate of modulated O(2) evolution. The intensity dependence of the fast fluorescence rise in dark adapted cells (+/-DCMU) suggests that light absorbed by the major antenna complex was not ...
متن کاملAn atypical member of the light-harvesting complex stress-related protein family modulates diatom responses to light.
Diatoms are prominent phytoplanktonic organisms that contribute around 40% of carbon assimilation in the oceans. They grow and perform optimally in variable environments, being able to cope with unpredictable changes in the amount and quality of light. The molecular mechanisms regulating diatom light responses are, however, still obscure. Using knockdown Phaeodactylum tricornutum transgenic lin...
متن کامل